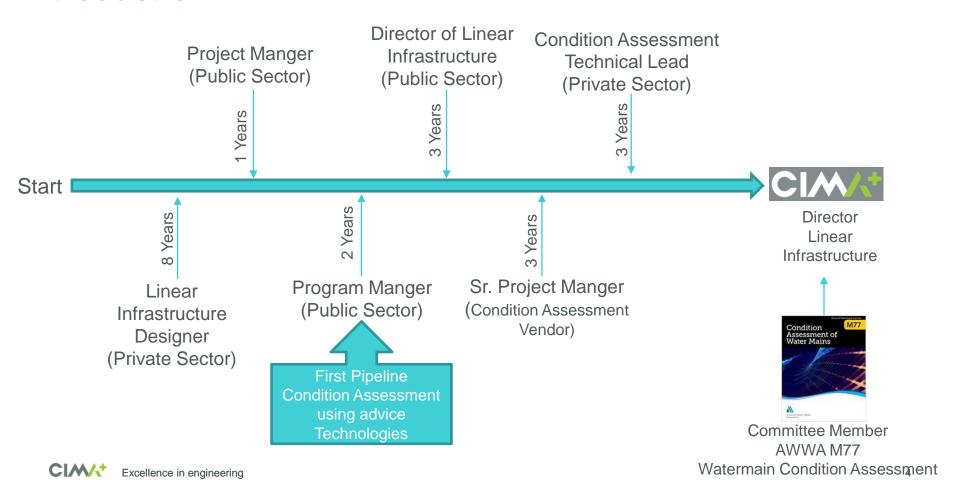


Cast Iron Pipes in the Water Distribution System Making Informed Decisions on Renewal Plans

Innovative Pipeline Management

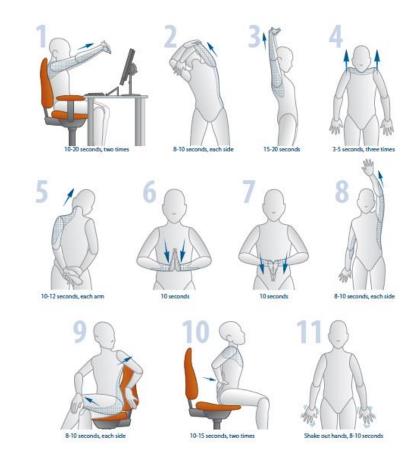
Presented byRabia Mady, P.Eng, Director Linear Infrastructure
June 30th, 2021



Agenda

- Introduction and Safety Minute
- Why To Establish A Cast Iron (CI) Reliability Analysis Frameworks
- What Inspection Tool to Use?
- Understanding Cast Iron Distress Status
- Converting Assessment Findings Into Asset Management
- Incorporating Inspection Findings into AWWA M28 Pipe Renewal Decision-Making Tree
- Questions & Answers

Introduction and Safety Minute


Introduction

Safety Minute – Computer & Desk Stretches

Sitting at a computer for long periods often causes neck and shoulder stiffness and, occasionally, lower back pain

> Do these stretches every hour or so throughout the day, or whenever you feel stiff

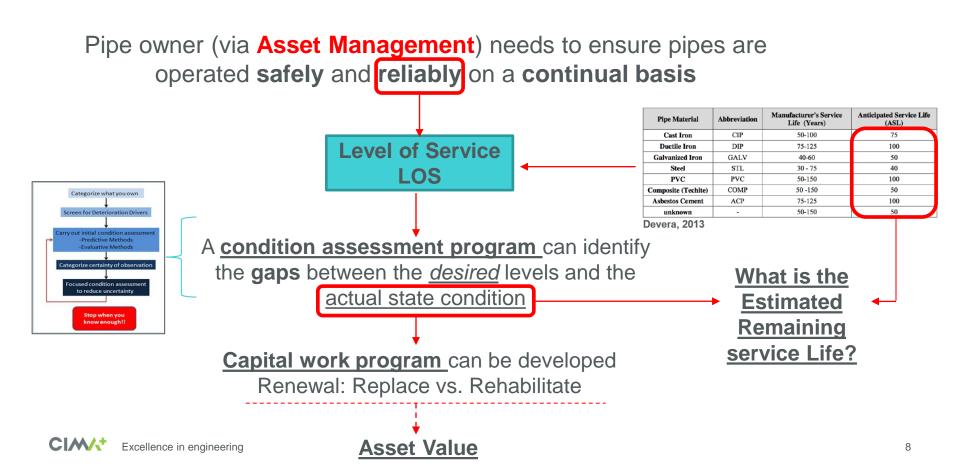


Why To Establish A Cast Iron Reliability Analysis Frameworks

The Classic Approach - A Condition Assessment Oriented Approach

Asset Inventory (CI)

Distress indicators for CI Remaining Wall Thickness

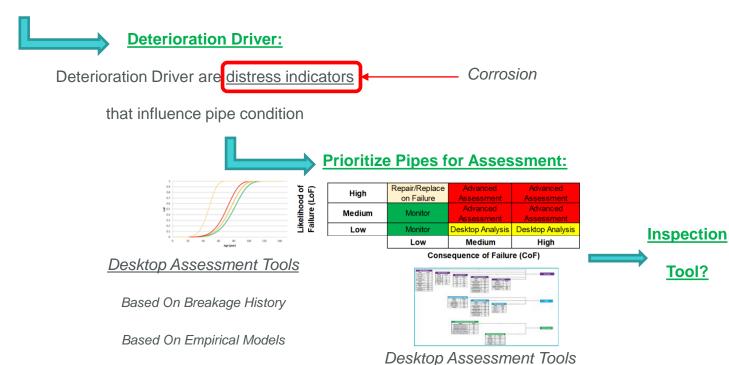

Desktop Assessment

Physical Assessment

Wall Thickness Loss	Condition
Less than 10%	Good
Betweeen 10% and 30%	
Greater than 30%	Poor

What Is Next.....

An Innovated Approach - Condition Assessment As Part Of Asset Management



What Inspection Tool to Use

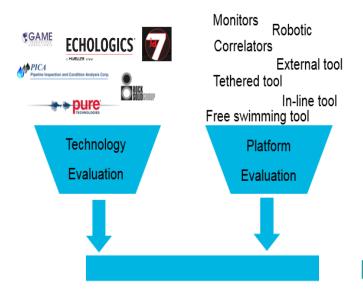
Prioritizing Pipe For Assessment

Failure Modes:

Structure, Hydraulic, Water, Quality

What Inspection Tool to Use?The Traditional Approach

Detection of individual defects	Spot checks with statistical extrapolation	Full length inline testing
Assess general pipeline condition	Desktop studies	Acoustic Wall Thickness Assessment
	Inspect Part of Pipeline, Predict the Rest	Inspect Entire Pipeline


More complete pipe wall coverage

However, this Matrix is based on

- 1. Pipe Length Coverage
- 2. Inspection Accuracy

What Inspection Tool to Use?

Evaluation Criteria (Samples)

Inspection Risk **Enabling Works Required** Lateral Conditions during Inspection Water Quality Risk

Accuracy of Defects

In-Service vs. Out of Service

Develop weight for each Evaluation Criteria (Pairwise Approach)

An **Optimal Inspection Tool** Based on the Client Set of Criteria

12

Technologies – Remaining Wall Thickness

	Technology	Screening
	Function	Criteria
Technology	Leak Detection	Localized
	Wall Thickness	Segment
Pitting depth		
measurement	Wall Thickness	Localized
Electromagnetic		
	Wall Thickness	Segment
Principal		
Wave Principal	Wall Thickness	_
	Leak Detection	Segment
Ultrasonic		
	Wall Thickness	Segment
Radiographic		
	Wall Thickness	Localized
CT Scans		
	Wall Thickness	Localized

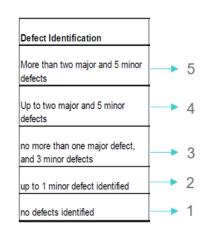
Slimline PIG

C.E.L.P

SeeSnake

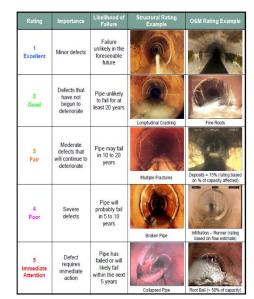
Leak Detection

It is time to do stretches


Understanding Cast Iron Distress Status

Describing CI Distress Status

Based on number of Defects Occurrence

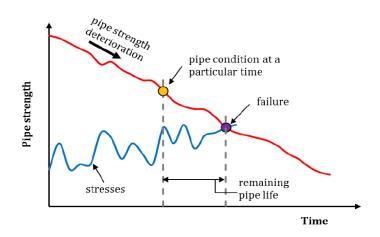

Minor Defect Leak or Hydraulic limitation

Major Defect Main Break

Fix it when it break!

NASSCO PACP® Coding System applied in Gravity Sewers

A **systematic** method to produce **consistent** and useful information, including **rating** pipes that **correspond to intervention** strategies and renewal methods



Excellence in engineering

Can We Implement NASSCO Methodology In Cast Iron

Unlike Sewer Inspections Inspection is NOT the entire Picture

Rigid Pipe Failure

17

Condition Rating System For Watermains

Based on Remaining Wall Thickness?

12" CI 1919 28% Wall Lost

Condition

Good

Poor

12" CI 1921 26% Wall Lost

Maybe Poor Condition!

Betweeen 10%

Betweeen 10% and 30%

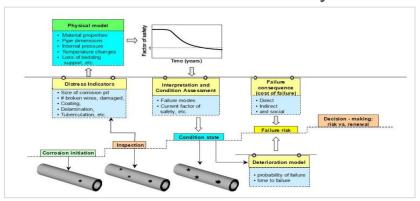
Greater than 30%

Wall Thickness Loss

CIMA

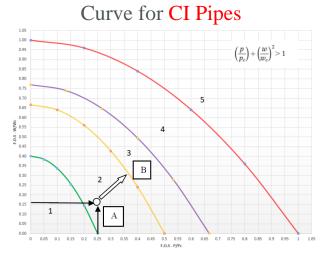
Excellence in engineering

Condition Rating System For Watermains


Should be Based on Wall Thickness (Deterioration Rate) and Imposed Loads

The **Relationship** Between Wall Thickness and Imposed Loads is Defined in **Design Standards**

Balvant et. al 2000 – Residual Factor of Safety Methodology for CI Pipe

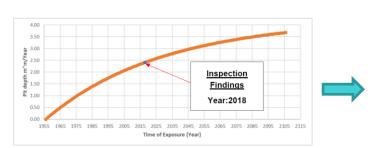

Condition Rating System For Watermains

Inspection Findings → Distress Status In terms of Condition Grading (1-5)

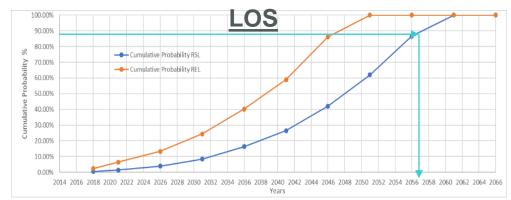
Wall Thickness Loss	Condition
Less than 10%	Good
Betweeen 10% and 30%	
Greater than 30%	Poor

"A": point on the curve is a Distress status

Nondimensional Condition Grading



"B": Inspection Frequency (Using Deterioration Model)

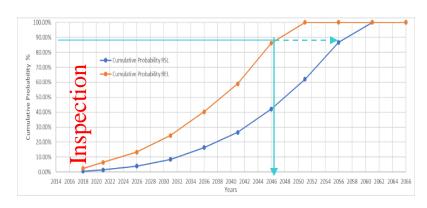

Converting Assessment Findings Into Remaining Service Life

Remaining Service Life

Given the material variability, in addition to changes in the local environment that influence corrosion rates, understanding pipe behavior and predicted service lifetime will exhibit <u>uncertainty</u> <u>regardless of the inspection</u> <u>accuracy</u>

Calibrated Deterioration Curve

CIMA* Excellence in engineering

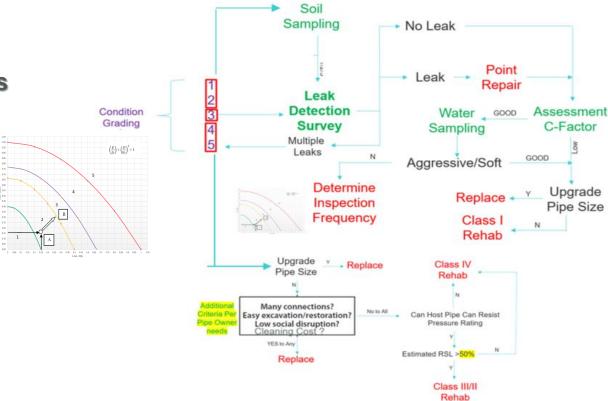

Asset Value (Sample CI Installed in 1956)

Pipe Material	Abbreviation	Manufacturer's Service Life (Years)	Anticipated Service Life (ASL)
Cast Iron	CIP	50-100	75
Ductile Iron	DIF	73-123	100
Galvanized Iron	GALV	40-60	50
Steel	STL	30 - 75	40
PVC	PVC	50-150	100
Composite (Techite)	COMP	50 -150	50
Asbestos Cement	ACP	75-125	100
unknown	-	50-150	50

75 Years \rightarrow 2031

Devera, 2013

Regardless of Surrounding Environment


Asset Depreciation in an Appraisal 2046-2054 (Based on operating Pressure/Pressure Rating)

Incorporating Inspection Findings into AWWA M28 Pipe Renewal Decision-Making Tree

Capital Planning – Decision Making Tree

Field Measurements

- Wall Thickness Measurement
- 2. Soil Sampling
- 3. Water Sampling
- 4. C-Factor Test
- Leak Detection
- 6. TPM

Excellence in engineering

Rabia Mady, P.Eng, Director, Linear Infrastructure Rabia.Mady@cima.ca T 905 695-1005, ext. 5763 **C** 437 225-0793

5935 Airport Road, Suite 500, Mississauga, Ontario L4V 1W5 Canada